1992    
1993    
1994    
1995    
1996    
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
Schumann, F. O., Behnke, L., Li, C.-H., Kirschner, J.

Exploring highly correlated materials via electron pair emission: The case of NiO/Ag(100)
Journal of Physics: Condensed Matter 25, (9),pp 094002/1-8 (2013)
Metal oxides like NiO are usually termed 'highly correlated', because the material properties are decisively determined by the electron-electron interaction. This makes them interesting candidates for electron pair spectroscopy which is particularly sensitive to the electron correlation. We have prepared ultrathin NiO/Ag(100) films and studied the electron pair emission upon electron impact. Compared to the metal substrate we observe an increase of the coincidence intensity by a factor of 8 for NiO. Thickness dependent measurements prove that this enhancement is an intrinsic effect rather than due to a mean free path increase of the oxide. The NĂ©el temperature TN of NiO films displays a thickness dependence which allows us to tune TN. We performed temperature dependent measurements and observed no temperature dependence of the coincidence spectra. This proves that the electron pair emission probes the local correlation rather than long range order. An enhanced coincidence intensity was also found for other oxide phases compared to their corresponding metal phases.