1992    
1993    
1994    
1995    
1996    
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
Qin, H. J., Zakeri Lori, K., Ernst, A., Sandratskii, L. M., Buczek, P., Marmodoro, A., Chuang, T.-H., Zhang, Y., Kirschner, J.

Long-living terahertz magnons in ultrathin metallic ferromagnets
Nature Communications 6, pp 6126/1-8 (2015)
The main idea behind magnonics is to use the elementary magnetic excitations (magnons) for information transfer and processing. One of the main challenges, hindering the application of ultrafast terahertz magnons in magnonics, has been the short lifetime of these excitations in metallic ferromagnets. Here, we demonstrate that the engineering of the electronic structure of a ferromagnetic metal, by reducing its dimensionality and changing its chemical composition, opens a possibility to strongly suppress the relaxation channels of terahertz magnons and thereby enhance the magnons\'lifetime. For the first time, we report on the long-lived terahertz magnons excited in ultrathin metallic alloy films. On the basis of the first-principles calculations, we explain the microscopic nature of the long lifetime being a consequence of the peculiar electronic hybridizations of the species. We further demonstrate a way of tailoring magnon energies (frequencies) by varying the chemical composition of the film.

TH-2015-01