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The success of density functional theory (DFT) for electronic structure calculations is

at the basis of modern theoretical condensed matter physics. The original theorem of Ho-

henberg and Kohn (HK) and the reproducibility of the exact electronic density in a non-

interacting Kohn Sham (KS) system both extend to, in principle, any electronic phase,

including magnetism and superconductivity. However the practical applicability of KS-DFT

depends on the availability of density functionals for the relevant observables of the system.

As a matter of fact to derive density functionals able to describe the features of symmetry

broken phases, in particular the order parameter (OP) of that phase, turns out to be a task

of outstanding complexity.

A scheme to circumvent this problem is to generalize the HK theorem to include the OP as

an additional density. The corresponding KS system then reproduces both the electronic and

the additional density. In the case of superconductivity the original formulation of a DFT

scheme (SCDFT) is due to Oliveira, Gross and Kohn[1] where the additional density is the

order parameter of superconductivity χ(r, r′) = 〈ψ↑(r)ψ↓(r
′)〉. With a further development

of DFT to include the nuclear degrees of freedom [2], in recent years an approximate exchange

correlation potential Fxc for the KS Bogoliubov-de-Gennes system has been derived which

features the electron-phonon (e-ph) and the electron-electron (e-e) interaction on the same

footing [3].

This leads to a self-consistent equation for the superconducting OP that depends on

the phononic features and on the normal-state electronic structure. In the space of single

particle KS orbitals it is formally equivalent to a BCS gap equation
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where n and k, respectively, are the electronic band index and the wave vector inside the

Brillouin zone. β is the inverse temperature and Enk =
√

ξ2nk + |∆nk|
2 are the excitation

energies of the KS system, defined in terms of the gap function ∆nk and the KS eigenvalues

Max Planck Institute of Microstructure Physics

Theory Department



2

ξnk measured with respect to the Fermi energy. The kernel, K, consists of two contributions

K = Ke−ph+Ke−e, representing the effects of the e-ph and of the e-e interactions, respectively.

The gap function is related to the the OP in the KS basis by χnk = ∆
nk
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Compared to many-body perturbation theory, SCDFT features two major achievements:

1) It is completely free of adjustable parameters. Coulomb and phonon mediated interactions

are included without the need of introducing a phenomenological µ∗. 2) all the frequency

summations are performed analytically in the construction of Fxc. Retardation effects can

be exactly included but at the same time the gap equation has still the form of a static BCS

equation. The formal simplicity of Eq. 1 then allows to account for the anisotropy of real

systems at a low computational cost.

FIG. 1: Left: Superconducting gap of hole-doped graphane (hydrogenated graphene), as a function

of the energy distance from the Fermi level. Right: the Superconducting gap of CaC6, nk-resolved

on the Fermi Surface (the colorscale gives the SCDFT gap in meV).

At the Fermi energy (ξnk = 0) the form of ∆nk is determined mostly by the attractive

phononic term Ke−ph. Beyond the phononic energy range the interaction becomes repulsive

due the direct Coulomb interaction between electrons in Ke−e. The system then maximizes

its condensation energy by including a sign change in ∆nk. In accordance with Eq. 1, when

both the interaction and ∆nk change sign, then the overall contribution becomes once again

attractive. This mechanism takes the name Coulomb renormalization.

The typical behavior of ∆nk versus ξnk is plotted in Fig. 1 for graphane (hydrogenated

graphene C2H2). We use a logarithmic scale to enhance the behavior at the Fermi energy.

This system shows a characteristic two gap structure, i.e. ∆nk at the Fermi energy shows two

distinctly different values corresponding to the presence of two Fermi surfaces. A similar

behaviour, but with three distinct gap values at the Fermi energy, is found for hydrogen

under pressure. We predict that this material has a critical temperature of 242 K at 450



3

GPa[4].

The more anisotropic the Fermi surface and the electron-phonon coupling are the more

structured becomes the gap function at the Fermi energy. An example is CaC6 shown in

Fig. 1 where the superconducting gap closely reflects the phononic anisotropy[5].

To go beyond this reciprocal space description, we have recently implemented a transfor-

mation of the superconducting OP χnk back into real space.

FIG. 2: χ(R,0) of CaC6 (left) and C2H2 (right)

This means to multiply the KS basis {ϕnk(r)} of the initial expansion:

χ(R, s) =
∑

nk

χnkϕnk(r)ϕ
∗
nk(r

′) (2)

where R = (r+r′)/2 and s = (r−r′) are respectively the center of mass and the relative co-

ordinate of the cooper pair. We are thereby able to connect the chemical bonding properties

with superconducting features in a very graphic and compact way. As an example we show

χ(R,0) of CaC6 and C2H2 in Fig. 2. The electronic bonds giving the largest contribution

to superconductivity are clearly visible. In graphane the large positive values come from the

sp2 carbon bonds. In CaC6 the dominant contribution arises from the π-states as well as dz2

Ca orbitals and interlayer states. The Coulomb renormalization contributions is provided

by the C-H bonds in graphane and by the sp2 states of CaC6 (blue regions).

Although this real space representation is formally equivalent to the reciprocal space one

it results more natural when describing systems with large unit cells and complex geometries

like surfaces. We have recently studied a lead monolayer deposited on the Si(111) surface. As

shown in Fig. 3. From the real space description one can clearly appreciate the localization of

the SC order parameter on the Pb layer, making this system a prototype for two dimensional
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superconductivity.

FIG. 3: Crystal structure and SC order parameter for a Pb monolayer on the Si(111) surface.

The lack of hybridization between lead and substrate makes the superconducting condensation

extremely localized in real space.
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