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Most formulations of spin density functional theory (SDFT) restrict the magnetization

vector field to have global collinearity. Nevertheless, there exists a wealth of strong non-

collinearity in nature, for example molecular magnets, spin-spirals, spin-glasses and all mag-

nets at finite temperatures.

The local spin density approximation (LSDA) can be extended to these non-collinear

cases [1] but this extension has the undesirable property of having the exchange-correlation

(XC) field parallel to the magnetization density at each point in space. When used in

conjunction with the equation of motion for the spin magnetization in the absence of spin

currents and external fields [2, 3], this local collinearity eliminates the torsional term, result-

ing in no time evolution. This severe shortcoming of LSDA, where the physical prediction is

qualitatively wrong, opens up an important new direction for the development of functionals

where this time evolution is correctly described.

Towards this goal we have taken two approaches. The first extends the Kohn-Sham

optimized effective potential (OEP) method to the non-collinear case [3, 4], while the second

is to develop a new XC functional [5] based on spin-spiral waves which goes beyond the LSDA

by using gradients of the magnetization density. In both cases, we require the Kohn-Sham

(KS) equation for two-component spinors Φi, which has the form of a Pauli equation. For

non-interacting electrons moving in an effective scalar potential vS and a magnetic vector

field BS it reads as (atomic units are used throughout):

−1

2
∇2 + vS(r) + µBσ ·BS(r)Φi(r) = ǫiΦi(r). (1)

This equation can be derived by minimizing the total energy which, in SDFT, is given as

a functional of the density ρ(r) =
∑

occ

i Φ†
i (r)Φi(r) and the magnetization density m(r) =

µB

∑

occ

i Φ†
i (r)σΦi(r).
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FIG. 1: Fully non-collinear magnetization density and B field obtained using the LSDA and

exchange-only EXX functionals for an unsupported Cr-monolayer in Néel state. Arrows indi-

cate the direction and information about the magnitude (in atomic units) is given in the colour

bar.

For a given external scalar potential vext and magnetic field Bext this total energy reads:

E[ρ,m] = TS[ρ,m] +

∫

ρ(r)vext(r)dr+

∫

m(r) ·Bext(r)dr+ U [ρ] + EXC[ρ,m] (2)

=
occ
∑

i

ǫi −
∫

ρ(r)vXC(r)dr−
∫

m(r) ·BXC(r)dr− U [ρ] + EXC[ρ,m]

where U [ρ] = 1/2
∫ ∫

ρ(r′)ρ(r)/|r′ − r|dr′dr is the Hartree energy. The XC potential and

XC magnetic field are given by

vXC(r) =
δEXC[ρ,m]

δρ(r)
BXC(r) =

δEXC[ρ,m]

δm(r)
(3)

respectively. The exact functional form of EXC[ρ,m] is unknown and has to be approximated

in practice.

Assuming that the densities [ρ,m] are non-interacting (v,B)-representable one may,

equivalently, minimize the total-energy functional (2) over the effective scalar potential and

magnetic field. Thus the conditions

δE[ρ,m]

δvS(r)

∣

∣

∣

∣

BS

and
δE[ρ,m]

δBS(r)

∣

∣

∣

∣

vS

(4)
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must be satisfied.

If we were to use a functional that depends explicitly on spinor valued wavefunctions we

can stay within a single global reference frame, in contrast to the case where functionals

originally designed for collinear magnetism are used in a non-collinear context by introducing

a local reference frame at each point in space. The most commonly used orbital functional

is the EXX energy given by

EEXX

X
[{Φi}] = −1

2

∫

drdr′
occ
∑

i,j

Φ†
i (r)Φj(r)Φ

†
j(r

′)Φi(r
′)

|r− r′| (5)

where the label occ indicates that the summation runs only over occupied states. From the

conditions of Eq. (4) and using the functional form given in Eq. (5) (although generalization

to other orbital functionals is straightforward), the OEP equations for the non-collinear

systems were derived [3, 4].

In order to explore the impact of treating non-collinear magnetism in the way outlined

above and at the same time to ensure that our numerical analysis be as accurate as possible,

we implemented the OEP equations for the fully non-collinear case within the full-potential

linearized augmented plane wave (FP-LAPW) method implemented within the ELK code [6].

This method is then applied to study the non-collinear spin magnetism in an unsupported

Cr (111) monolayer. In Fig. 1 are shown the magnetization density and B field calculated

using both the LSDA and the OEP method.

A striking feature of the OEP B field is that, unlike its LSDA counterpart, it is not

locally parallel to the magnetization density and this will produce manifestly different spin-

dynamics. This is because the equation of motion for the spin magnetization reads

dm(r, t)

dt
= γm(r, t)× [BXC(r, t) +Bext(r, t)]−∇ · JS (6)

where JS is the spin current and γ the gyromagetic ratio. In the time-independent LSDA

and conventional GGA, m(r) and BXC(r) are locally collinear, as is clear from Fig. 1, and

therefore m(r) × BXC(r) vanishes. This also holds true in the adiabatic approximation of

time dependent SDFT which, by Eq. (6), implies that these functionals cannot properly

describe the dynamics of the spin magnetization. In contrast, already at the static level,

for the EXX functional m(r) × BX(r) does not vanish. In fact, in the ground state of a

non-collinear ferromagnet without external magnetic field, m(r) × BXC(r) exactly cancels

the divergence of the spin current, ∇ · JS, i.e. these terms are equally important, and it
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is essential to have a proper description of m(r) × BXC(r). These results indicate that a

time-dependent generalization of our method could open the way to an ab-initio description

of spin dynamics. How well this functional really performs in describing the spin dynamics

remains a question for future investigations.

FIG. 2: Illustration of spin spiral waves along one spatial coordinate for two different choices of

wavevector q = k1,2. The angle θ is determined by s while the angle φ = q · r. Image reproduced

from the PhD thesis of F. Eich.

Unfortunately OEP calculations are computationally demanding, leading us to develop [5]

a new semi-local XC functional for non-collinear magnetism. This is analogous to the case

in DFT, where going from the LDA to the generalized gradient approximations (GGAs) led

to additional accuracy. To derive a new functional, our starting point was the spin-spiral

wave (SSW) phase of the electron gas, which has magnetization:

m(r) = m(s cos[q · r], s sin[q · r],
√
1− s2) (7)

where s is the spin projection on the z-axis and q is the SSW wavevector, it is illustrated

in Fig. 2. Using quantum monte-carlo or the random phase approximation (RPA), the XC

energy for such a state can be calculated and parameterized. To then construct a functional,

we will use gradients of the magnetization to create effective s and q variables which can

then be inserted into our parameterization. One particular choice is to use quantities:

D(r) = ||m(r)× (∇⊗m)||2 and d(r) = |m(r)×∆m(r)|2 (8)

giving effective s and q:

s2(r) =
D2(r)

D2(r) +m4(r)d(r)
and q2 =

D2(r) +m4(r)d(r)

m4(r)D(r)
(9)
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FIG. 3: The magnitude (heat map) and direction (arrows) of the magnetization density (left) and

XC magnetic field (right) of the Cr monolayer.

The functional can then be written as:

EXC[ρ,m] =

∫

dr ǫLSDA

XC
(n,m)(r) (1 + SXC(n,m,D, d)(r)) (10)

where ǫLSDA
XC

(n,m) is the non-collinear LSDA functional discussed earlier. SXC is the en-

hancement factor based on the parameterization of the SSW energies, and is designed so

that the total functional reduces to LSDA in the appropriate limit. It can also be shown

that this functional respects the zero-torque theorem.

FIG. 4: Heat map of the z-component ofm(r)×BXC(r) around a Chromium atom in the monolayer.

Note the three-fold rotation symmetry inherited from the symmetry of the monolayer.
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To test this functional, it was implemented in ELK [6] and applied to the same case

studied by OEP EXX above. In Fig. 3, we plot the self-consistent magnetization density

m(r) and the XC magnetic field BXC(r) for a 2d slice in the plane of the Cr monolayer.

To demonstrate that this functional does lead to locally non-collinear terms, in Fig. 4 we

plot the z-component of m(r)×BXC(r) in the region around an atom of Chromium. Unlike

the LSDA case and similar to the OEP case, this quantity is non-zero implying non-zero

spin currents in the ground-state. For TDDFT this functional shows much promise as it

contains non-zero local torques on the magnetization density (missing in LSDA) while still

a semi-local functional and hence computationally less demanding that OEP.
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