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The ab-initio calculation of optical absorption spectra of nano-structures and solids is

a formidable task. The current state-of-the-art is based on many-body perturbation the-

ory: one solves the Bethe-Salpeter equation (BSE) using the one-body Green’s function

obtained from the GW approximation. Resonances, corresponding to bound electron-hole

pairs called excitons, which have energies inside the gap, can then appear in the spectrum.

This procedure is a well-established method for yielding macroscopic dielectric tensors which

are generally in good agreement with experiment. Unfortunately, solving the BSE involves

diagonalizing a large matrix making this method computationally very expensive.

Time-dependent density functional theory (TDDFT) [1], which extends density functional

theory into the time domain, is another method able, to determine neutral excitations of

a system. Although formally exact, the predictions of TDDFT are only as good as the

approximation of the exchange-correlation (xc) kernel: fxc(r, r
′, t− t′) ≡ δvxc(r, t)/δρ(r

′, t′),

where vxc is the TD exchange-correlation potential and ρ is the TD density. There are several

such approximate kernels in existence, the earliest of which is the adiabatic local density

approximation (ALDA) [2]. However in the dielectric function calculated using ALDA the

physics of the bound electron-hole pair is totally missing. There have been previous attempts

to solve this problem, and there exist kernels which correctly reproduce the peaks in the

optical spectrum associated with bound excitons. The nano-quanta kernel [3], derived from

the four-point Bethe-Salpeter kernel, is very accurate but has the drawback of being nearly

as computationally demanding as solving the BSE itself. The long-range correction (LRC)

kernel has a particularly simple form, fxc = −α/q2, which limits its computational cost.

This kernel produces the desired excitonic peak, but depends on the choice of the parameter

α, which turns out to be strongly material-dependent, thereby limiting the predictiveness of

this approximation. In our latest work [4, 5] we propose a new parameter-free approximation

for fxc, and demonstrate that this kernel is nearly as accurate as BSE with a computational

cost of ALDA.
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The exact relationship between the dielectric function ε and the kernel fxc for a periodic

solid can be written as

ε−1(q, ω) = 1 +
v(q)χ0(q, ω)

1− [v(q) + fxc(q, ω)]χ0(q, ω)
, (1)

where v is the bare Coulomb potential, χ is the full response function, and χ0 is the response

function of the non-interacting Kohn-Sham system. All these quantities are matrices in

the basis of reciprocal lattice vectors G. The bootstrap kernel is a frequency-independent

approximation given by:

fxc(q, ω) =
ε−1(q, ω = 0)

χ0(q, ω = 0)
(2)

where ε−1(q, ω = 0) is determined self-consistently with Eq. (1). We note that although

Eq. (1) is exact, it is useful only when either fxc or ε is given; if neither are available then

obviously it cannot be used as a generating equation for both quantities. With the addition

of the approximation given by Eq. (2) however, both fxc and ε can be determined from

knowledge of χ0 exclusively. The advantages of this form for the kernel is that 1. it has the

correct 1/q2 behavior; 2. as ε improves from cycle to cycle so does fxc; 3. the computation cost

is minimal and 4. most importantly, no system-dependent external parameter is required.

Using the method the optical spectra for various extended systems have been calculated

using the ELK code [6].

Presented in Fig. 1 are the results for some small (Ge ∼ 0.67 eV) to medium (diamond

∼ 5.47 eV) bandgap semiconductors. For comparison, experimental data as well as the RPA

spectra are also plotted. The experimental data clearly show that all these materials have

weakly bound excitons leading to a small shifting of the spectral weight to lower energies

compared to RPA. The results from TDDFT with the new kernel exactly follow this trend

and are in excellent overall agreement with experiment.

A stringent test for any approximate xc-kernel is in its ability to treat materials with

strongly bound excitons. In these cases a new resonant peak appears in the bandgap itself

and represents the bound state of an electron-hole pair. Perhaps the most studied test

case for this phenomenon is the ionic solid LiF. Other excitonic materials which have also

attracted attention and are considered particularly difficult to treat are the noble gas solids.

Plotted in the first column of Fig. 2 are the results for three materials of this class: LiF, solid
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FIG. 1: Imaginary part of the dielectric tensor (ε2) as function of photon energy (in eV).

Ar and Ne. What is immediately clear is that the bootstrap procedure, which gave only

a slight shift of spectral weight for Ge, now gives rise to an entirely new bound excitonic

peak inside the gap in all three cases. The location of the peak, which corresponds to the

excitonic binding energy, is also very well reproduced for all these materials.
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FIG. 2: Imaginary part of the dielectric tensor (ε2) as function of photon energy (in eV).

The second column of Fig. 2 consists of some special cases –NiO has an anti-ferromagnetic

ground state and provides the bootstrap technique with a test of its validity for magnetic
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materials. It is clear from Fig. 2 that the bootstrap method leads once again to the correct

excitonic binding energy. Results for the anatase phase of TiO2 are also presented in Fig. 2.

TiO2 is a useful test for the bootstrap method due to its non-cubic unit cell, which leads

to directional anisotropy in the optical spectrum. As can be seen the bootstrap method

captures this anisotropy very well. Even subtle features like the small shoulder at ∼4 eV in

the out-of-plane dielectric function, which is missing in the in-plane case, are well reproduced.
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