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The ultimate goal of molecular electronics is the design of electronic devices where the

basic units, such as transistors, are single molecules. On the theoretical side, the generic

task is to calculate the current-voltage (IV) characteristics of systems consisting of a single

molecule sandwiched between two semi-infinite metallic leads.

In our group we follow two different approaches to describe the transport properties of

single molecules. On one hand we consider the so-called “standard approach” which can

deal with molecular junctions once a steady-state current is achieved. On the other hand,

to be able to study the transient behavior after switching, AC bias, as well as electron

pumps, we have developed a novel methodology that allows the study of time-dependent

effects in the transport properties of molecular devices.

Steady-state approach to molecular optical switches

To study steady-state transport, a combination of density functional theory (DFT) with

Green’s function techniques has been developed and widely used by several groups [1] and

can now be considered the standard ab-initio technique to calculate the current-voltage (IV)

characteristics of single molecules sandwiched between two “semi-infinite” metallic leads.

The basic idea is to divide the system in 3 different regions. The left and right semi-

infinite leads are represented in terms of the corresponding Kohn-Sham Green’s functions,

GL and GR. The central part of the system is described by a Kohn-Sham equation where,

in addition to the ordinary Kohn-Sham potential, the coupling to the leads is incorporated

by the non-Hermitian self-energy operators

ΣL = HCL GL HLC , ΣR = HCR GR HRC , (1)

where HCL, HLC , HCR, HRC are the blocks of the Kohn-Sham-Hamiltonian matrix connect-

ing the central region with the left/right leads.

Using this method the Transmission Function of the whole system can be calculated as

T (E)= trace(ΓLG (E) ΓRG(E)†) (2)
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where ΓL/R = i
(

ΣL/R − Σ†

L/R

)

are the non-Hermitian parts of the self-energies and G is

the Green function of the complete (Kohn-Sham) system. Once the transmission function

is known, the IV characteristics follows from the Landauer formula:

I(V )=
2e

h

∫

dE T (E, V )[f (E, µ+)−f (E, µ−) ] (3)

Using this methodology we have recently studied the electronic and transport properties of

Chrysazine type molecules [2]. According to our calculations the isolated Chrysazine presents

3 geometrical isomers related to the orientation of the hydrogen atom at the H-O-phenyl

lateral rings of the molecule (structures on the left panel in Fig. 2). From the Transmission

Function of the extended molecule (Fig. 1) and their corresponding IV characteristics (Fig. 2

middle and right panel), it was shown that this system can be used as a molecular optical

switch. In other words, comparing the current shown in the middle and right panels of Fig. 2

(corresponding to an asymmetric or symmetric connection to the leads of the Chrysazine

molecule) we observe that there is a difference in the transport properties of this system,

which is correlated to the differences in the molecular orbitals and transmission function

shown in Fig. 1. The different geometrical isomers show as well a different electron-transport

behavior upon applying a voltage to the system.

FIG. 1: Transmission function (red) and density of states (blue) together with the correspond-

ing frontier molecular orbitals for the isomer (a) of the asymmetric (left) and symmetric (right)

structures. (Structures on the upper part of the left panel of Fig. 2)

The analysis of the orbital distribution of the different isomers confirms that the transport

occurs through a bias window rather than through a single channel (see orbitals in Fig. 1).

In addition, the IV characteristics of the symmetrically connected Chrysazine (structures
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on the right of left panel in Fig. 2) shows that within a bias voltage range from 3.5 to 4.2 V,

the IV of structures (b) and (c) are similar while the current through structure (a) in the

same bias window is twice as large (see right panel in Fig. 2). This suggest that if the device

is operated within this bias window one could produce an optical rotation of the hydrogen

to isomerize the molecule, for example, from structure (a) to (b), according to the results

shown in Fig. 2 this optical rotation will produce a jump in the current, which indicates the

possibility of using the Chrysazine-type molecules as optical switches.
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FIG. 2: Left panel: Structures corresponding to the asymmetric (left) and symmetric (right) con-

nection of the Chrysazine molecule to the metallic leads. Middle and right panels: CurrentVoltage

characteristics for the extended structures (a), (b), (b′) and (c) for the asymmetric (middle) and

symmetric (right) connection

Time-dependent phenomena in quantum transport

The second approach pursued in our group focuses on time-dependent phenomena. The

Landauer-plus-DFT approach, by construction, inherits the main assumption of the Lan-

dauer formalism that for a system driven out of equilibrium by a dc bias, a steady current

will eventually be achieved. In other words, the dynamical formation of a steady state does

not follow from the formalism but rather constitutes an assumption.

We find several situations in which the steady state assumption is not valid. The first

example is a correlated single-level quantum dot (QD) weakly coupled to the leads, i.e. a

typical case where one would expect to observe the Coulomb blockade(CB) phenomenon

[3]. In essence, CB is due to an electrostatic barrier induced by the electrons in the device

which prevents further electrons from tunneling in, unless the bias is sufficiently increased to

supply the necessary charging energy of the device. To describe CB in nanoscale transport it

is particularly important to ensure the charge quantization of the device. To guarantee this
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in a DFT calculation, the exchange-correlation (XC) potential must exhibit the so-called

“derivative discontinuity”, i.e., the XC potential jumps by a constant when the number of

electrons on the QD passes through an integer. We use a novel XC functional featuring

the proper derivative discontinuity and find that the assumption that the system evolves

towards a steady state is not generally justified. Instead, the discontinuity of the potential

leads to self-sustained oscillations induced by electron correlations, with history dependent

frequency and amplitude.

0

0.5

1

n
0

W
L

= 1.3 

W
L

= 1.6 

W
L

= 1.9 18 19 20
t

0.995

1

1.005

n
0

2

3

0

0.4

0.8

2

3

0

0.4

0.8

2

3

0 5 10 15 20

t

0

0.4

0.8{
{

v
K
S

I
0

FIG. 3: Time evolution of the density, current and KS potential for three different biases. In all

panels, solid, chain and dashed line refer to WL = 1.3, 1.6, 1.9, respectively. Top panel: densities

at the QD. The inset shows the density at the end of the propagation period. Middle three panels:

current through the QD (thick lines) and KS potential (thin lines). Bottom panel: current five

sites away from the QD.

By following the time-dependent density on the QD (the upper-most panel of Fig. 3), one

sees upon applying the bias, the charge density is constantly accumulating on the dot until it

reaches an integer value (n=1), at which the Kohn-Sham potential jumps up. This prevents

more electrons from tunneling in and causes some of the charge to flow back into the leads.

As the charge density of the dot decreases, it hits the integer value again, therefore the

potential jumps back down, and the process repeats. The oscillations are also present in the

current (middle three panels of Fig. 3), but this time with a much larger amplitude relative
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to its average value. Note that away from the QD, the oscillations in the current (and in

the density) die out (bottom panel). Oscillations are clearly visible also in the Kohn-Sham

potential (middle three panels). Due to the fairly large jump in the XC potential and the

small amplitude of the oscillations of the density at the dot, the KS potential is a train of

almost rectangular pulses.

The dynamical picture of CB, manifesting itself as a periodic sequence of charging and

discharging of the QD, is a direct consequence of electronic correlations, so one might think

that for strictly non-interacting electrons the steady-state assumption is always valid. How-

ever, it can be shown analytically that after switching on a dc bias, the current first shows

some transient oscillations and then converges to the steady state value predicted by the

Landauer formula only if the Hamiltonian of the junction has a smooth density of states.

On the other hand, if the long time limit of the Hamiltonian supports at least two bound

states, the system does not evolve to a steady state, and instead, persistent, non-decaying,

localized current oscillations are observed which can be much larger than the steady part of

the current [4].
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FIG. 4: Upper pannel: Time evolution of the current at x = 0(WL = 0.15) . At T = 100 a.u.,

a gate potential is turned on (Vg = 1.3 a.u. and tg = 20 a.u.) which creates two bound states,

resulting in large oscillations of the current. Lower panel: schematic representation of the system

and its time evolution.
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In the upper panel of Fig. 4 the TD current in the center of the device region is plotted

(the system and its time evolution is shown schematically in the lower panel of Fig. 4) . The

development of a steady-state current for T < 100 a.u. can clearly be recognized. After the

bound states are created (t > T + tg) the current starts to oscillate as expected.

The amplitude of the current oscillation is of the order of 0.35 a.u., i.e., more than an order

magnitude larger than the initial steady-state current. The amplitude of these oscillations

depends on the entire history of the applied potential and the initial state. The oscillation

frequencies are given by the eigenenergy differences of the bound states.

Clearly, in the real world, phonon scattering will lead to damping of the oscillations

described above. However, phonon scattering occurs on the time scale of pico-seconds while

the electronic oscillations have oscillation periods of femto-seconds or less. Hence, if the

ultimate goal of molecular electronics is to achieve switching times on the electronic time

scale, the oscillations predicted here will be very relevant.
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