Theory Department
Max Planck Institute of Microstructure Physics
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
2017    
2018    
2019    
2020    
2021    
Azimi, M., Chotorlishvili, L., Mishra, S. K., Greschner, S., Vekua, T., Berakdar, J.

Helical multiferroics for electric field controlled quantum information processing
Physical Review B 89, (2),pp 024424/1-8 (2014)
Magnetoelectric coupling in helical multiferroics allows us to steer spin order with electric fields. Here we show theoretically that in a helical multiferroic chain quantum information processing as well as quantum phases are highly sensitive to electric (E) field. Applying E field, the quantum state transfer fidelity can be increased and made directionally dependent. We also show that E field transforms the spin-density-wave/nematic or multipolar phases of a frustrated ferromagnetic spin-1/ 2 chain in chiral phase with a strong magnetoelectric coupling. We find sharp reorganization of the entanglement spectrum as well as a large enhancement of fidelity susceptibility at Ising quantum phase transition from nematic to chiral states driven by electric field. These findings point to a tool for quantum information with low power consumption.

TH-2014-29