Theory Department
Max Planck Institute of Microstructure Physics
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
2017    
2018    
2019    
2020    
2021    
Etesami, S. R., Chotorlishvili, L., Sukhov, A., Berakdar, J.

Longitudinal spin current induced by a temperature gradient in a ferromagnetic insulator
Physical Review B 90, (1),pp 014410/1-12 (2014)
Based on the solution of the stochastic Landau-Lifshitz-Gilbert equation discretized for a ferromagnetic chain subject to a uniform temperature gradient, we present a detailed numerical study of the spin dynamics with a particular focus on finite-size effects. We calculate and analyze the net longitudinal spin current for various temperature gradients, chain lengths, and external static magnetic fields. In addition, we model an interface formed by a nonuniformly magnetized finite-size ferromagnetic insulator and a normal metal and inspect the effects of enhanced Gilbert damping on the formation of the space-dependent spin current within the chain. One aim of this study is the inspection of the spin-Seebeck effect beyond the linear response regime. We find that within our model the microscopic mechanism of the spin-Seebeck current is the magnon accumulation effect quantified in terms of the exchange spin torque. According to our results, this effect drives the spin-Seebeck current even in the absence of a deviation between the magnon and phonon temperature profiles. The influence of the dipole-dipole interaction and domain formation on the spin current is exposed and discussed. Our theoretical findings are in line with the recently observed experimental results by Agrawal et al. [Phys. Rev. Lett. 109, 107204 (2012)].

TH-2014-31