Theory Department
Max Planck Institute of Microstructure Physics
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
2017    
2018    
2019    
2020    
2021    
Bucci, F., Sanna, A., Continenza, A., Katrych, S., Karpinski, J., Gross, E. K. U., Profeta, G.

42214 layered Fe-based superconductors: An ab initio study of their structural, magnetic, and electronic properties
Physical Review B 93, (2),pp 024518/1-8 (2016)
As a follow-up to the discovery of a new family of Fe-based superconductors, namely, the RE4Fe2As2Te1−xO4 (42214) (RE = Pr, Sm, and Gd), we present a detailed ab initio study of these compounds highlighting the role of rare-earth (RE) atoms, external pressure, and Te content on their physical properties. Modifications of the structural, magnetic, and electronic properties of the pure (e.g., x = 0.0) 42214 compounds and their possible correlations with the observed superconducting properties are calculated and discussed. The careful analysis of the results obtained shows that (i) changing the RE atoms allows one to tune the internal pressure acting on the As height with respect to the Fe planes; (ii) similarly to other Fe pnictides, the 42214 pure compounds show an antiferromagnetic-stripe magnetic ground state phase joined by an orthorhombic distortion (not experimentally found yet); (iii) smaller RE atoms increase the magnetic instability of the compounds possibly favoring the onset of the superconducting state; (iv) external pressure induces the vanishing of the magnetic order with a transition to the tetragonal phase and can be a possible experimental route towards higher superconducting critical temperature (Tc); and (v) Te vacancies act on the structural parameters, changing the As height and affecting the stability of the magnetic phase.

TH-2016-17