Theory Department
Max Planck Institute of Microstructure Physics
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
2017    
2018    
2019    
2020    
2021    
Thomas, S., Matyssek, C., Hergert, W., Arnold, M., Kiewidt, L., Karamehmedovic, M., Wriedt, Th.

Application of generalized Mie theory to EELS calculations as a tool for optimization of plasmonic structures
Plasmonics 11, (3),pp 865-874 (2016)
Technical applications of plasmonic nanostructures require a careful structural optimization with respect to the desired functionality. The success of such optimizations strongly depends on the applied method. We extend the generalized multiparticle Mie (GMM) computational electromagnetic method and use it to excite a system of plasmonic nanoparticles with an electron beam. This method is applied to EELS calculations of a gold dimer and compared to other methods. It is demonstrated that the GMM method is so efficient, that it can be used in the context of structural optimization by the application of genetic algorithms combined with a simplex algorithm. The scheme is applied to the design of plasmonic filters.

TH-2016-19