Theory Department
Max Planck Institute of Microstructure Physics
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
2017    
2018    
2019    
2020    
2021    
Klier, N., Sharma, S., Pankratov, O., Shallcross, S.

Electrical control of the RKKY interaction in bilayer graphene
Physical Review B 94, (20),pp 205436/1-10 (2016)
The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between impurity spins is calculated for bilayer graphene in the presence of a layer symmetry-breaking external electric field. We find that for intercalated impurities (i.e., impurity atoms between the two constituent layers of the bilayer) the interaction is extraordinarily sensitive to such a field. In particular, (i) the form of the RKKY interaction may be tuned between oscillatory, ferromagnetic, and antiferromagnetic simply by varying the external field, and (ii) the strength of the RKKY interaction may be increased by an order of magnitude by application of an external field. This sensitivity arises directly from the "Mexican hat" form that the low-energy spectrum takes in an applied field. These finding suggest that heterostructures of intercalated magnetic atoms in bilayer graphene may represent a possible system for electrical control over magnetic structure.

TH-2016-49