Theory Department
Max Planck Institute of Microstructure Physics
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
2017    
2018    
2019    
2020    
2021    
Matsushita, Y.-I., Madjarova, G., Dewhurst, J. K., Shallcross, S., Felser, C., Sharma, S., Gross, E. K. U.

Large magnetocrystalline anisotropy in tetragonally distorted Heuslers: A systematic study
Journal of Physics D 50, (9),pp 095002/1-8 (2017)
With a view to the design of hard magnets without rare earths we explore the possibility of large magnetocrystalline anisotropy energies in Heusler compounds that are unstable with respect to a tetragonal distortion. We consider the Heusler compounds Fe2YZ with Y = (Ni, Co, Pt), and Co2YZ with Y = (Ni, Fe, Pt) where, in both cases, Z = (Al, Ga, Ge, In, Sn). We find that for the Co2NiZ, Co2PtZ, and Fe2PtZ families the cubic phase is always, at T = 0, unstable with respect to a tetragonal distortion, while, in contrast, for the Fe2NiZ and Fe2CoZ families this is the case for only 2 compounds - Fe2NiGe and Fe2NiSn. For all compounds in which a tetragonal distortion occurs we calculate the magnetocrystalline anisotropy energy (MAE) finding remarkably large values for the Pt containing Heuslers, but also large values for a number of the other compounds (e.g. Co2NiGa has an MAE of -2.38 MJ m−3). The tendency to a tetragonal distortion we find to be strongly correlated with a high density of states (DOS) at the Fermi level in the cubic phase. As a corollary to this fact we observe that upon doping compounds for which the cubic structure is stable such that the Fermi level enters a region of high DOS, a tetragonal distortion is induced and a correspondingly large value of the MAE is then observed.

TH-2017-03