Sivkov, I., Brovko, O. O., Rungger, I., Stepanyuk, V. S.
Gate control of spin-polarized conductance in alloyed transitional metal nanocontacts
Physical Review B 95, (10),pp 104405/1-7 (2017)
To date, endeavors in nanoscale spintronics are dominated by the use of single-electron or single-spin transistors having at their heart a semiconductor, metallic, or molecular quantum dot whose localized states are non-spin-degenerate and can be controlled by an external bias applied via a gate electrode. Adjusting the bias of the gate one can realign those states with respect to the chemical potentials of the leads and thus tailor the spin-polarized transmission properties of the device. Here we show that similar functionality can be achieved in a purely metallic junction comprised of a metallic magnetic chain attached to metallic paramagnetic leads and biased by a gate electrode. Our ab initio calculations of electron transport through mixed Pt-Fe (Fe-Pd and Fe-Rh) atomic chains suspended between Pt (Pd and Rh) electrodes show that spin-polarized confined states of the chain can be
shifted by the gate bias causing a change in the relative contributions of majority and minority channels to the nanocontact"s conductance. As a result, we observe strong dependence of conductance spin polarization on the applied gate potential. In some cases the spin polarization of conductance can even be reversed in sign upon gate potential application, which is a remarkable and promising trait for spintronic applications.
TH-2017-07