Theory Department
Max Planck Institute of Microstructure Physics
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
2017    
2018    
2019    
2020    
2021    
Tao, K., Liu, P., Guo, Q., Shen, L., Xue, D., Polyakov, O. P., Stepanyuk, V. S.

Engineering magnetic anisotropy and magnetization switching in multilayers by strain
Physical Chemistry Chemical Physics 19, (5),pp 4125-4130 (2017)
The effect of the strain on the magnetic properties of metallic multilayers has been investigated by ab initio studies. Our results indicate that the magnetic anisotropy energy (MAE) of an Fe(001) surface can be drastically enhanced by capping with 5d elements. By choosing Ir-Fe multilayers as a model system, we demonstrate that the MAE which depends on the composition and the structure of the multilayers can be tuned in a large range by strain. Furthermore, our results show that not only the amplitude of the MAE but also the easy axis of Pt-Fe multilayers can be engineered by strain. Magnetization switching by strain is also investigated.

TH-2017-08