Theory Department
Max Planck Institute of Microstructure Physics
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
2017    
2018    
2019    
2020    
2021    
Renziehausen, K., Barth, I.

Many-particle quantum hydrodynamics: Exact equations and pressure tensors
Progress of Theoretical and Experimental Physics 2018, (1),pp 013A05/1-44 (2018)
In the first part of this paper, the many-particle quantum hydrodynamics equations for a system containing many particles of different sorts are derived exactly from the many-particle Schrödinger equation, including the derivation of the many-particle continuity equations, many-particle Ehrenfest equations of motion, and many-particle quantum Cauchy equations for any of the different particle sorts and for the total particle ensemble. The new point in our analysis is that we consider a set of arbitrary particles of different sorts in the system. In the many-particle quantum Cauchy equations, there appears a quantity called the pressure tensor. In the second part of this paper, we analyze two versions of this tensor in depth: the Wyatt pressure tensor and the Kuzmenkov pressure tensor. There are different versions because there is a gauge freedom for the pressure tensor similar to that for potentials. We find that the interpretation of all the quantities contributing to the Wyatt pressure tensor is understandable, but for the Kuzmenkov tensor it is difficult. Furthermore, the transformation from Cartesian coordinates to cylindrical coordinates for the Wyatt tensor can be done in a clear way, but for the Kuzmenkov tensor it is rather cumbersome.

TH-2018-02