Theory Department
Max Planck Institute of Microstructure Physics
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
2017    
2018    
2019    
2020    
2021    
Valenta, J., Honda, F., Valiska, M., Opletal, P., Kastil, J., Misek, M., Divis, M., Sandratskii, L. M., Prchal, J., Sechovsky, V.

Antiferromagnetism and phase transitions in noncentrosymmetric UIrSi3
Physical Review B 97, (14),pp 144423/1-8 (2018)
Magnetization and specific-heat measurements on a UIrSi3 single crystal reveal Ising-like antiferromagnetism below TN = 41.7K with the easy magnetization direction along the c axis of the tetragonal structure. The antiferromagnetic ordering is suppressed by magnetic fields > Hc0Hc = 7.3 T at 2 K) applied along the c axis. The first-order metamagnetic transition at Hc exhibits asymmetric hysteresis reflecting a slow reentry of the complex ground-state antiferromagnetic structure with decreasing field. The hysteresis narrows with increasing temperature and vanishes at 28 K. A second-order metamagnetic transition is observed at higher temperatures. The point of change of the order of transition in the established H-T magnetic phase diagram is considered as the tricritical point (at Ttc = 28 K and μ0Htc = 5.8 T). The modified-Curie-Weiss law fits of temperature dependence of the a- and c-axis susceptibility provide opposite signs of Weiss temperatures, Θap  ∼  -51K and Θcp ∼  +38K, respectively. This result and the small value of μ0Hc contrasting to the high TN indicate competing ferromagnetic and antiferromagnetic interactions responsible for the complex antiferromagnetic ground state. The simultaneous electronic-structure calculations focused on the total energy of ferromagnetic and various antiferromagnetic states, the U magnetic moment, and magnetocrystalline anisotropy provide results consistent with experimental findings and the suggested physical picture of the system.

TH-2018-13