Theory Department
Max Planck Institute of Microstructure Physics
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
2017    
2018    
2019    
2020    
2021    
Tsatrafyllis, N., Kuhn, S., Dumergue, M., Foldi, P., Kahaly, S., Cormier, E., Gonoskov, I. A., Kiss, B., Varju, K., Varro, S., Tzallas, P.

Quantum optical signatures in a strong laser pulse after interaction with semiconductors
Physical Review Letters 122, (19),pp 193602/1-6 (2019)
Electrodynamical processes induced in complex systems like semiconductors by strong electromagnetic fields have traditionally been described using semiclassical approaches. Although these approaches allowed the investigation of ultrafast dynamics in solids culminating in multipetahertz electronics, they do not provide any access to the quantum-optical nature of the interaction, as they treat the driving field classically and unaffected by the interaction. Here, using a full quantum-optical approach, we demonstrate that the subcycle electronic response in a strongly driven semiconductor crystal is imprinted in the quantum state of the driving field resulting in nonclassical light states carrying the information of the interaction. This vital step towards strong-field ultrafast quantum electrodynamics unravels information inaccessible by conventional approaches and leads to the development of a new class of nonclassical light sources.