Theory Department
Max Planck Institute of Microstructure Physics
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
2017    
2018    
2019    
2020    
2021    
Pellegrini, Camilla, Glawe, Henning, Sanna, Antonio

Density functional theory of superconductivity in doped tungsten oxides
Physical Review Materials 3, (6),pp 064804/1-7 (2019)
We apply density functional theory for superconductors (SCDFT) to doped tungsten oxide in three forms: electrostatically doped WO3, perovskite WO3−xFx, and hexagonal CsxWO3. We achieve a consistent picture in which the experimental superconducting transition temperature Tc is reproduced, and superconductivity is understood as a weak-coupling state sustained by soft vibrational modes of the WO6 octahedra. SCDFT simulations of CsxWO3 allow us to explain the anomalous Tc behavior observed in most tungsten bronzes, where Tc decreases with increasing carrier density. Here, the opening of structural channels to host Cs atoms induces a softening of strongly coupled W-O modes. By increasing the Cs content, these modes are screened and Tc is strongly reduced.