Theory Department
Max Planck Institute of Microstructure Physics
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
2017    
2018    
2019    
2020    
2021    
Singh, Nisha, Elliott, Peter, Dewhurst, J. Kay, Gross, E. K. U., Sharma, Sangeeta

Ab-initio real-time magnon dynamics in ferromagnetic and ferrimagnetic systems
Physica Status Solidi B 257, (7),(2020)
Magnonics-an emerging field of physics-is based on the collective excitations of ordered spins called spin waves. These low-energy excitations carry pure spin currents, paving the way for future technological devices working at low energies and on ultrafast timescales. The traditional abinitio approach to predict these spin-wave energies is based on linear-response time-dependent density functional theory (LR-TDDFT) in the momentum and frequency regime. Herein, the simulation of magnon dynamics using real-time time-dependent density functional theory is demonstrated, thus extending the domain of ab-initio magnonic studies. Unlike LR-TDDFT, this enables us to observe atom-resolved dynamics of individual magnon modes and, using a supercell approach, the dynamics of several magnon modes can be observed simultaneously. The energies of these magnon modes are concurrent with those found using LR-TDDFT. Next, the complex dynamics of the superposition of magnon modes is studied, before finally studying the element-resolved modes in multisublattice magnetic systems.