Theory Department
Max Planck Institute of Microstructure Physics
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
2017    
2018    
2019    
2020    
2021    
Elliott, Peter, Singh, Nisha, Krieger, Kevin, Gross, E.K.U., Sharma, Sangeeta, Dewhurst, J. Kay

The microscopic origin of spin-orbit mediated spin-flips
Journal of Magnetism and Magnetic Materials 502, pp 166473 (2020)
Laser induced ultrafast demagnetization is a powerful process by which the magnetic moment of a material can be modified on femtosecond timescales. However, to eventually utilize this process in technology, it is crucial that we develop a thorough understanding of the physical mechanisms involved. Based on ab initio simulations, spin-orbit mediated spin-flips have been proposed as one form of ultrafast demagnetization. In this paper, we explore this mechanism in more detail using time-dependent density functional theory (TDDFT) to study demagnetization in bulk Ni. We show why spin-orbit coupling (SOC) causes spin-flips by highlighting the importance of circulating spin currents induced by the coupling between the electronic spin and orbital motion. We present both a mathematical and heuristic picture of how SOC can cause demagnetization. Furthermore, we show that same arguments can be used to understand how the spin angular momentum is transferred to the lattice during laser induced demagnetization in a realistic material.