Theory Department
Max Planck Institute of Microstructure Physics
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
2017    
2018    
2019    
2020    
2021    
Göbel, Börge, Mook, Alexander, Henk, Jürgen, Mertig, Ingrid

Compensated quantum and topological Hall effects of electrons in polyatomic stripe lattices
Physica Status Solidi B 257, (7),pp 1900518/1-10 (2020)
The quantum Hall effect is generally understood for free electron gases, in which topologically protected edge states between Landau levels (LLs) form conducting channels at the edge of the sample. In periodic crystals, the LLs are imprinted with lattice properties; plateaus in the transverse Hall conductivity are not equidistant in energy anymore. Herein, crystals with a polyatomic basis are considered. For a stripe arrangement of different atoms, the band structure resorts nontrivially and exhibits strong oscillations that form a salient pattern with very small bandgaps. The Hall conductivity strongly decreases for energies within these bands, and only sharp peaks remain for energies in the gap. These effects are traced back to open orbits in the initial band structure; the corresponding LLs are formed from states with positive and negative effective mass. The partial cancellation of transverse charge conductivity also holds for different polyatomic stripe lattices and even when the magnetic field is replaced by a topologically nontrivial spin texture. The topological Hall effect is suppressed in the presence of magnetic skyrmions. The discussion is complemented by calculations of Hofstadter butterflies and orbital magnetization.