Theory Department
Max Planck Institute of Microstructure Physics
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
2017    
2018    
2019    
2020    
2021    
Ben Hamed, Hichem, Hoffmann, Martin, Adeagbo, Waheed A., Ernst, Arthur, Hergert, Wolfram

Magnetic structure of bulk GdMnO3: Influence of strain
Physica Status Solidi B 257, (7),pp 1900632/1-10 (2020)
Internal structural distortions are of great interest in the determination of electronic and magnetic properties of the strong correlated rare earth manganites. When combined with external structural modifications like uniaxial or biaxial strains, structural distortions can lead to the emergence of new magnetic ground states. This realization is seemingly more probable with the low-band-width manganite GdMnO3 on the grounds that it is located in the magnetoelectric phase diagram of orthorhombic rare earth manganites between the A-type antiferromagnetic (AFM) order and the cycloidal spin orders. Herein, a thorough analysis of the magnetic structure of GdMnO3 based on the density functional theory connected with a classical Heisenberg model together with Monte Carlo calculations is presented. It is found whether a compressive uniaxial strain along the c direction or biaxial strain on the ab plane favors a ferromagnetic (FM) ground state over the AFM one. On the contrary, a tensile strain also on the ab plane is likely to stabilize the E-type AFM order.