Theory Department
Max Planck Institute of Microstructure Physics
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
2017    
2018    
2019    
2020    
2021    
Sandratskii, L. M., Bruno, P.

Electronic structure, exchange interactions, and Curie temperature in diluted III-V magnetic semiconductors: (GaCr)As, (GaMn)As, (GaFe)As
Physical Review B 67, pp 214402/1-11 (2003)
We complete our earlier [Phys. Rev. B 66, 134435 (2002)] study of the electronic structure, exchange interactions, and Curie temperature in (GaMn)As and extend the study to two other diluted magnetic semiconductors (GaCr)As and (GaFe)As. Four concentrations of the 3d impurities are studied: 25, 12.5, 6.25, 3.125 %. (GaCr)As and (GaMn)As are found to possess a number of similar features. Both are semimetallic and ferromagnetic, with similar properties of the interatomic exchange interactions and the same scale of the Curie temperature. In both systems the presence of the charge carriers is crucial for establishing the ferromagnetic order. An important difference between two systems is in the character of the dependence on the variation of the number of carriers. The ferromagnetism in (GaMn)As is found to be very sensitive to the presence of the donor defects, such as AsGa antisites. On the other hand, the Curie temperature of (GaCr)As depends rather weakly on the presence of this type of defects but decreases strongly with decreasing number of electrons. We find the exchange interactions between 3d atoms that make a major contribution into the ferromagnetism of (GaCr)As and (GaMn)As and propose an exchange path responsible for these interactions. The properties of (GaFe)As are found to differ crucially from the properties of (GaCr)As and (GaMn)As. (GaFe)As does not show a trend to ferromagnetism and is not half-metallic that makes this system unsuitable for the use in spintronic semiconductor devices.

TH-2003-11