Theory Department
Max Planck Institute of Microstructure Physics
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
2017    
2018    
2019    
2020    
2021    
Kudrnovsky, J., Maca, F., Turek, I., Redinger, J.

Substrate-induced antiferromagnetism of a Fe monolayer on the Ir(001) surface
Physical Review B 80, (6),pp 064405/1-8 (2009)
We present detailed ab initio study of structural and magnetic stability of a Fe monolayer on the fcc(001) surface of iridium. The Fe monolayer has a strong tendency to order antiferromagnetically for the true relaxed geometry. On the contrary an unrelaxed Fe/Ir(001) sample has a ferromagnetic ground state. The antiferromagnetism is thus stabilized by the decreased Fe-Ir layer spacing in striking contrast to the recently experimentally observed antiferromagnetism of the Fe/W(001) system which exists also for an ideal bulk-truncated, unrelaxed geometry. The calculated layer relaxations for Fe/Ir(001) agree reasonably well with recent experimental low-energy electron diffraction data. The present study centers around the evaluation of pair exchange interactions between Fe atoms in the Fe overlayer as a function of the Fe/Ir interlayer distance which allows for a detailed understanding of the antiferromagnetism of a Fe/Ir(001) overlayer. Furthermore, our calculations indicate that the nature of the true ground state could be more complex and display a spin spiral like rather than a c(2x2)-antiferromagnetic order. Finally, the magnetic stability of the Fe monolayer on the Ir(001) surface is compared to the closely related Fe/Rh(001) system.

TH-2009-31