Origin of β -cerium investigated with ab initio calculations of stacking fault energies

•Andreas Östlin¹ Jason C. Lashley^{2,3} Levente Vitos^{1,2,4}

¹ Applied Materials Physics, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden

² Department of Physics, Uppsala University, P.O. Box 516, SE-75120 Uppsala, Sweden

³ Los Alamos National Laboratory, P.O. Box 1663 Bikini Atoll Road, Los Alamos, New Mexico,

USA

⁴ Research Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Budapest H-1525, P.O. Box 49, Hungary

At zero pressure the element cerium shows a metastable $(t_{1/2} \sim 40 \text{ years})$ double hexagonal close-packed β -phase that is positioned between two cubic phases, γ and α . With modest pressure the β -phase can be suppressed, and a volume contraction (17%) occurs between α and γ phases as temperature is varied. This phenomena has been linked to subtle alterations in the 4f band. In order to rationalize the presence of the metastable β -phase, and its position in the phase diagram, we have computed stacking fault formation energies of the cubic phases of cerium. It is found that there is a large difference in the stacking fault energies between the α and γ -phase. The β -phase energy is nearly degenerate with the γ -phase, and can be seen as a dislocation reservoir that appears to be necessary to accommodate the large strains generated during the α - γ transition. Such a degeneracy explains long standing third law calorimetry results, and dislocation dynamics the pressure and temperature hysteretic effects.

ostli@kth.se