1992    
1993    
1994    
1995    
1996    
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
Nepijko, S. A., Krasyuk, A., Oelsner, A., Schneider, C. M., Schönhense, G.

Quantitative measurements of magnetic stray field dynamics of permalloy particles in a photoemission electron microscopy
Journal of Microscopy 242, (2),pp 216-220 (2011)
By example of a Permalloy particle (40 x 40 μm2 size, 30 nm thickness) we demonstrate a procedure to quantitatively investigate the dynamics of magnetic stray fields during ultrafast magnetization reversal. The measurements have been performed in a time-resolving photoemission electron microscope using the X-ray magnetic circular dichroism. In the particle under investigation, we have observed a flux-closure-dominated magnetic ground structure, minimizing the magnetic stray field outside the sample. A fast magnetic field pulse introduced changes in the micromagnetic structure accompanied with an incomplete flux closure. As a result, stray fields arise along the edges of domains, which cause a change of contrast and an image deformation of the particles geometry (curvature of its edge). The magnetic stray fields are calculated from a deformation of the X-ray magnetic circular dichroism (XMCD) images taken after the magnetic field pulse in a 1 ns interval. These measurements reveal a decrease of magnetic stray fields with time. An estimate of the lower limit of the domain wall velocity yields about 2 x 103 m s−1.