1992    
1993    
1994    
1995    
1996    
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
Klaua, M., Ullmann, D., Barthel, J., Wulfhekel, W., Kirschner, J., Urban, R., Monchesky, T., Monchesky, T., Enders, A., Cochran, C. F., Cochran, J. F., Heinrich, B.

Growth, structure, electronic, and magnetic properties of MgO/Fe(001) bilayers and Fe/MgO/Fe(001) trilayers
Physical Review B 64, (4),pp 134411 (8) Springer-Verlag, (2001)
Single-crystal epitaxial MgO thin films were grown directly onto high-quality Fe single crystal and Fe whisker substrates and covered with Fe/Au layers. Reflection high-energy electron diffraction and low-energy electron diffraction patterns and scanning tunneling microscopy images showed that the growth of MgO proceeded pseudomorphically in a nearly layer-by-layer mode up to six monolayers. A misfit dislocation network is formed for MgO layers thicker than six monolayers. The thin MgO films were characterized electrically by scanning tunneling spectroscopy. The tunneling barrier in MgO was found to depend on the MgO layer thickness, starting from 2.5 eV at two monolayer thickness to the expected full barrier of MgO of 3.6 eV at six monolayers. A small fraction of the scanned area showed randomly placed spikes in the tunneling conductance. Tunneling I-V curves at the defects showed a lower tunneling barrier than that in the majority of the MgO film. The total tunneling current integrated over areas of 100x100 nm2, however, was not dominated by spikes of higher conductance. These local defects in the MgO barrier were neither related to atomic steps on the Fe substrates nor to individual misfit dislocations. Magnetic anisotropies and exchange coupling in Fe/MgO(001) and Fe/MgO/Fe(001) structures were studied using ferromagnetic resonance and Brillouin light scattering.

ki-2001-g02