1992    
1993    
1994    
1995    
1996    
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
Marcus, P. M., Qian, X. H., Hübner, W.

Equilibrium state of a metal slab and surface stress
Physical Review B 60, (23),pp 16088-16093 (1999)
First-principles full-potential all-electron total-energy calculations on a seven-layer Mo(001) slab have found the equilibrium state of the slab and the energies of nearby states produced by isotropic two-dimensional (epitaxial) strain. In the slab equilibrium state, the in-plane lattice constant contracts 1.7% and the out-of-plane lattice constant contracts 0.7% from bulk values. The energy differences of these nearby states strained from equilibrium have been fitted to a composite elastic model of the slab which has two surface regions and a bulk region, each with three elastic parameters. The parameters of the surface regions determined by fitting the energy differences permit evaluation of the surface stress as 5.28 m Ry/bohr2 = 4.11 J/m2. The surface region material is found to be less stiff than the bulk.

ki-1999-e02