1992    
1993    
1994    
1995    
1996    
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
Pollinger, F., Schmitt, S., Sander, D., Tian, Z., Kirschner, J., Vrdoljak, P., Stadler, C., Maier, F., Marchetto, H., Schmidt, T., Schöll, A., Umbach, E.

Nanoscale patterning, macroscopic reconstruction, and enhanced surface stress by organic adsorption on vicinal surfaces
New Journal of Physics 19, pp 013019/1-8 (2017)
Self-organization is a promising method within the framework of bottom-up architectures to generate nanostructures in an efficient way. The present work demonstrates that self-organization on the length scale of a few to several tens of nanometers can be achieved by a proper combination of a large (organic) molecule and a vicinal metal surface if the local bonding of the molecule on steps is significantly stronger than that on low-index surfaces. In this case thermal annealing may lead to large mass transport of the subjacent substrate atoms such that nanometer-wide and micrometer-long molecular stripes or other patterns are being formed on high-index planes. The formation of these patterns can be controlled by the initial surface orientation and adsorbate coverage. The patterns arrange self-organized in regular arrays by repulsive mechanical interactions over long distances accompanied by a significant enhancement of surface stress.Wedemonstrate this effect using the planar organic molecule PTCDA as adsorbate and Ag(10 8 7) and Ag(775) surfaces as substrate. The patterns are directly observed by STM, the formation of vicinal surfaces is monitored by high-resolution electron diffraction, the microscopic surface morphology changes are followed by spectromicroscopy, and the macroscopic changes of surface stress are measured by a cantilever bending method. The in situ combination of these complementary techniques provides compelling evidence for elastic interaction and a significant stress contribution to long-range order and nanopattern formation.