1992    
1993    
1994    
1995    
1996    
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
Harrison, M. J., Woodruff, D. P., Robinson, J., Sander, D., Pan, W., Kirschner, J.

Adsorbate-induced surface reconstruction and surface-stress changes in Cu(100)/O: Experiment and theory
Physical Review B 74, (16),pp 165402 (2006)
Using the crystal curvature technique we have measured the change in surface stress on Cu(100) induced by oxygen adsorption to produce, at 300 K, a c(2x2) overlayer phase, and at 500 K, the √2x√2)R45° missing-row reconstructed phase. Density functional theory (DFT) slab calculations have also been performed of the absolute surface stress of the clean Cu(100) surface and these two chemisorbed oxygen phases. Both experiment and theory show that oxygen adsorption leads to a compressive change in the surface stress that is larger for the c(2x2) overlayer (experiment: -1.0 N/m; theory: -3.07 N/m) than for the missing-row reconstruction (experiment: -0.6 N/m; theory: -2.03 N/m). Furthermore, the DFT calculations show that the absolute compressive surface stress of the c(2x2) phase of -1.18 N/m is lowered by the reconstruction to an average value of -0.14 N/m. These results indicate that surface stress reduction plays a role in causing the reconstruction. The discrepancies between theory and experiment are discussed in the context of possible sources of error in both experiment and theory.