1992    
1993    
1994    
1995    
1996    
1997    
1998    
1999    
2000    
2001    
2002    
2003    
2004    
2005    
2006    
2007    
2008    
2009    
2010    
2011    
2012    
2013    
2014    
2015    
2016    
Ma, X.-D., Nakagawa, T., Takagi, Y., Przybylski, M., Leibsle, F. M., Yokoyama, T.

Magnetic properties of self-assembled Co nanorods grown on Cu(110)-(2x3)N
Physical Review B 78, (10),pp 104420/1-8 (2008)
Structural and magnetic properties of self-assembled Co nanorods on a Cu(110)-(2x3)N surface have been investigated by low-energy electron diffraction (LEED), Auger-electron spectroscopy (AES), magneto-optical Kerr effect (MOKE), and x-ray magnetic circular dichroism (XMCD). The LEED observation confirms that the Co nanorod grows epitaxially along the [1[1]0] axis and its interval exhibits the (1x6) periodicity. The AES clarifies that the N atom locates always at the surface even after 5 monolayer (ML) Co deposition. Angle dependent magnetization curves of the Co nanorods recorded by MOKE and XMCD show that the magnetic easy axis is perpendicular to the rod within the substrate plane, irrespective of the Co thickness down to 0.8 ML. This implies that the magnetic anisotropy is not dominated by the shape anisotropy but by the magnetocrystalline anisotropy. The XMCD sum-rule analysis reveals significant enhancement of the orbital magnetic moment along the easy axis compared to the hard axes. The magnetocrystalline anisotropy is found to be directly related to the anisotropy of the orbital magnetic moment.